If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5=x^2+45
We move all terms to the left:
3x^2+5-(x^2+45)=0
We get rid of parentheses
3x^2-x^2-45+5=0
We add all the numbers together, and all the variables
2x^2-40=0
a = 2; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·2·(-40)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*2}=\frac{0-8\sqrt{5}}{4} =-\frac{8\sqrt{5}}{4} =-2\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*2}=\frac{0+8\sqrt{5}}{4} =\frac{8\sqrt{5}}{4} =2\sqrt{5} $
| 36x+34=466 | | 7x+4=144 | | 33−2w=-47 | | 49+x=355 | | 7x-5x+12=x=6 | | x-0.90x=70 | | 129=39-x | | 42-(3c=4=2(c+4)+c | | -(x-1)=-19 | | 4-7c=-17 | | -(x-1=-19 | | 2/3=(y+10) | | 4(y-6)=-5y+21 | | 24-2yy=3 | | 7a-4=3a+12 | | x/8+5=-3 | | 5m+6=4-3m | | (9i+7)(9i-7)=0 | | 1/4(2n-5)=4n-4 | | 7x+27=11x-37 | | 180+54=39+x | | 9+7q-4=5+7q | | 6(5-(3+2x))-8x=-8+4(5-5x) | | 4.68÷x=1.8 | | 16x+17=12x-5 | | q–5=25 | | 16y^2/16=9/16 | | 20y^2-41y+20=0 | | 200m-125m+43650=45000-150m | | -2x-5=2-4x-(-x)-(-1) | | 8(9y-4)-(5y+6)=0 | | 200.99+84.27x=1,380.77 |